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Abstract

We present a nonstiff, fully adaptive mesh refinement-based method for the Cahn-Hilliard equation. The method is
based on a semi-implicit splitting, in which linear leading order terms are extracted and discretized implicitly, combined
with a robust adaptive spatial discretization. The fully discretized equation is written as a system which is efficiently solved
on composite adaptive grids using the linear multigrid method without any constraint on the time step size. We demon-
strate the efficacy of the method with numerical examples. Both the transient stage and the steady state solutions of spin-
odal decompositions are captured accurately with the proposed adaptive strategy. Employing this approach, we also
identify several stationary solutions of that decomposition on the 2D torus.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Conservative phase field models have received renewed attention for the simulation of multi-phase, multi-
component fluids. These diffuse interface models are appealing because the mean of the order parameter or
phase field ¢ is preserved, ¢ has a physical meaning, no re-initialization is required to maintain well-defined
interfaces, and different physical effects, such as surfactants [1-3], long-range forces [4], viscoelasticiy [5-8] can
be modeled by a suitable modification of the free energy. These conservative diffuse interface models share a
common feature: a Cahn—Hilliard type equation.

The Cahn—Hilliard equation models the macrophase separation that occurs in an isothermal binary fluid
when a spatially uniform mixture is quenched below a critical temperature at which it becomes unstable.
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Let ¢ be the relative concentration of the two components and let ¢(x) = ¢,, = constant correspond to the
spatially uniform mixture, then the equilibrium profiles can be found by minimizing the free energy [9]

il = [ {0+ 380000 fox. m
Q
subject to the conservation of mass constraint
[ #1ax= gy, @

where Q is the region of space occupied by the system. The gradient term accounts for the surface energy. The
thickness of the interfacial layers is O(e), and f(¢(x)) is the bulk energy density. To be concrete, we take f'to
be the following symmetric double-well potential

|
(@) =50 - ). ()
The chemical potential u is defined as the first variation of (1)
_oH[¢]
W) =55y =1 (9) = V6 (), @)

and thus an equilibrium state corresponds to a solution of u(¢) = constant. Cahn and Hilliard [10,11] general-
ized the problem to time-dependent situations by approximating interfacial diffusion fluxes as being propor-
tional to chemical potential gradients and enforcing conservation of the field. That is,

0¢(t,x)
ot

=-V-J withJ =—A($)Vu, (5)

where A(¢) > 0 is the mobility or Onsager coefficient. This gives the Cahn—Hilliard equation

a¢ét; x)_ V- Vu(@), u(d)=-EVio+ (), forxe. (6)

Eq. (6) models the creation, evolution, and dissolution of diffusively controlled phase-field interfaces [12] (for a
review of the Cahn—Hilliard model see for example [13]). Periodic or no-flux boundary conditions (n- V¢ = 0
and n - AVyu = 0, where n is the unit vector normal to the domain boundary) are generally used for the Cahn—
Hilliard equation.

Note that the Cahn—Hilliard equation (6) has spatial derivatives of fourth order and a Laplacian acting on
the nonlinear term f”(¢). Thus, explicit time integration methods require a prohibitively small time step for
stability. Several fully implicit and semi-implicit time discretizations have been proposed [13-20] to relieve
the high order stability constraints. The computation of the initial-value problem for (6) also demands high
resolution both in space and time. Spatially, the solution develops fine microstructures in short times,
O(¢€?), and a coarsening process separating the two phases settles in a much longer time scale, O(¢!). To accu-
rately model real experimental systems, e needs to be very small relative to the domain size which implies that
the solution will have sharp gradients of O(e™!). Thus, the accurate computation of the solution calls for an
adaptive approach which can only be made practical if the time discretizations are nonstiff, i.e. free of any high
order stability constraint, and robust.

Adaptive finite element methods for the Cahn—Hilliard equation have been proposed in [21-23]. These
methods rely on an implicit treatment of both the bihamornic and the nonlinear term to remove the stability
constraints. As a result, nonlinear iterative solvers have to be invoked at each time step. Here we present an
adaptive finite difference-based alternative that removes the stability constraints without cost of nonlinear iter-
ative solvers. The proposed method combines for the first time an efficient semi-implicit scheme based on the
extraction of linear leading order terms [19] with adaptive mesh refinements [24] applied to the Cahn—Hilliard
equation recast as a system of second order equations [25,20]. At each time step, that system is solved at opti-
mal cost on the composite adaptive grids using a linear multigrid method without any constraint on the time
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step size. The remarkable stability properties of this linear semi-implicit method have been established recently
by Xu and Tang [26] for the case of some continuum epitaxial growth models.

Despite much work on the Cahn—Hilliard equation, there is still a lack of a complete understanding of its
stationary solutions in multi-dimensions (cf. [27]). It is known [28] that minimizers of H (scaled by 1/¢) con-
verge to minimizers of a sharp interface, isoperimetric problem in which solutions have phase boundaries of
constant mean curvature (i.e. circles and lines in 2D). It has been shown [27] that, for small ¢, minimizers of H
in the doubly periodic case (i.e. the 2D torus) exhibit a profile asymptotic to the solutions of the doubly peri-
odic isoperimetric problem. A stationary solution with a circular phase boundary and one with two horizontal
strips have been obtained numerically [14,20]. We present here four more stationary states in addition to those
already reported. The new stationary states consists of two vertical, four horizontal, left and right slanted
strips. Interestingly, these solutions are obtained from a random perturbation of the uniform state ¢,, = 0 with
some variation on how the initial data are set up in the domain. The interested reader can find these solutions
at the end of Section 5.

The rest of the paper is organized as follows. We devote Section 2 to introduce the nonstiff and adap-
tive time discretization while the adaptive mesh refinement strategy and the spatial discretization are dis-
cussed in detail in Section 3. The multilevel multigrid employed to solve the linear system resulting from
the time and spatial discretizations is described in Section 4. We document the performance of the fully
adaptive method and present examples of spinodal decomposition that lead to different stationary states in
Section 5.

2. Time discretization

We consider in this work the case of constant mobility and without loss of generality we take A = 1 (one can
always rescale time with 1). Following the approach described in [19], we extract the linear leading order terms
of (6) and rewrite this equation as

0 (1, x)
ot

where g(¢) = V2(f'(¢) — 1), 7 is a constant and here we use T = max f”(¢).
Introducing the auxiliary variables

=V (1 — EV?p) + g(¢), for x € Q, (7)

¢y =¢ and @, =1 — ezvzd)’ (8)
the modified equation (7) can be viewed as the system

0, (t,x

% = V0, +g(o), ©)

02(t,X) = 19, — EV2 0y, (10)

for x € Q, where g(¢,) = V*(f'(¢,) — t¢,). Here, we consider only periodic boundary conditions, i.e. ¢; and
¢, are periodic, and the domain Q is a rectangle in the plane. We note that Zhu et al. [17] used a similar
approach to treat a variable mobility case. They left however the nonlinear, potential term explicit in their time
discretization which carries a consequent time step restriction. The full extraction of the leading linear terms
for the Cahn-Hilliard equation as in (7) was first done in [19].

2.1. Adaptive extrapolated gear (SBDF) scheme

Among the large class of semi-implicit second order methods, we choose the semi backward difference for-
mula (SBDF) or extrapolated Gear scheme because of its high modal frequency damping and robust stability
properties [29]. It has been recognized that non-dissipative schemes such as the popular Crank—Nicolson gen-
erally perform poorly for the Cahn-Hilliard equation [21,19]. Indeed, by testing a Crank—Nicolson based
method for the system (9), (10), we found that this was the case.

We modify the traditional SBDF to allow for variable time step and apply it to the system (9) and (10),
obtaining
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Ar =Voi" +Big" + Bog" (11)
qD;Jrl — qurlwrl _ 62V2(p’f“, (12)
where Oy = Atz/(AfoAll), o = —All/Ato, and Oy = (Alo + ZAI)/All, ﬁO = —Al/Afo and ﬁl = Atl/Alo, with
At =1 — 1 Aty =" — 71, and Aty = Aty + At.

For fixed time step, the coefficients above assume their usual, constant values oy = 1/2, oy = —2, and
oy =3/2, By = —1 and B, = 2. Eqgs. (11) and (12) can be re-written as

n+l n n—1
e’ %Py %@ n n—1
At Ar A +pg" + Pog" (13)

— [t — EVEIT 4 @i = 0. (14)

_ vZ(p;+l — _

Since the SBDF is a two-step method, an approximation at ¢ = ¢! for (¢,¢») is required in addition to the
initial condition. This approximation is obtained by using the semi-implicit Euler’s method:
n+1 n
0 — ¢ 2 n+l n
Ml y 15
A7 Py +g (15)

¢g+l — T§0r1'+1 o €2v2(/)7+1, (16)

which is enough for achieving second order rates of convergence for the SBDF.
3. Discretization in space
3.1. Composite grid generation and dynamic adaptation

To capture accurately and efficiently the small scale structures in the solutions of the Cahn-Hilliard equa-
tion (7), we employ a composite grid, that is, a block-structured grid defined as a hierarchical sequence of
nested, progressively finer grid levels [24]. Each level is formed by a set of non-overlapping rectangular grid
patches aligned with the coordinate axes and the refinement ratio between two successive levels is two. Ghost
cells, are employed around each grid, for all levels, and underneath fine grid patches. Values at these extended
cells are obtained from interpolation to prevent the finite difference operators from being redefined at grid bor-
ders and at interior regions which are covered by finer levels.

While the generation of this type of grid is mature, the effective application of the adaptive mesh refinement
(AMR) technique to the Cahn—Hilliard equation requires addressing three important problems:

(1) Effective flagging, that is, to determine the cells whose collection gives the region where refinement is to
be applied.

(2) Accurate interpolations across grid interfaces to guarantee global high-order accuracy in the solution.

(3) Fast multilevel multigrid solvers which are cost-efficient on composite grids.

We tested two flagging strategies. One, based on the gradient of the order parameter for which we flag the
cells with indices rs such that

IV, I/1IVlls =9, (17)

and another one, for which we flag the cells with indices rs with relative values of the order parameter close to
zero, that is, cells close to the phase transition layer satisfying

D5l /1loe < 75 (18)

where the positive “tunning” parameters ¢ and 7y satisfy 0 < 1 and y < 1. We found that the latter performs
better for the spinodal decomposition problem considered here and thus it is the strategy we have adopted. Typ-
ical runs employed y = 0.35. Once the collection of flagged cells is obtained, grids in each level are generated by
applying the algorithm for point clustering introduced by Berger and Rigoutsos [30]. In each grid patch 75-85%
of its cells are flagged (grid efficiency). The rest of the cells are included so the grid patch is rectangular.
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Initially, when the phases are completely mixed, we cover the computational domain entirely with the
finest level. This is to ensure that the spinodal patterns at late times correspond to those that would be
obtained by using a uniform mesh with a mesh size equal to that of the finest level. Thus, the computational
cost is the highest in the very few initial time steps and progressively drops down as the phase domains
begin to form and coarsen. For example, with four levels of refinement the computational cost drops down
more that an order of magnitude. The savings increase as the number of levels of refinement increases. Note
that to accurately resolve the phase field, the number of refinement levels must be chosen such that the mesh
size of the finest level is O(e), which is the smallest scale associated with the width of the phase transition
layers.

The composite grid must be replaced (dynamic adaptation) in two situations. First, when phase transition
layers tend to escape or to form outside the regions covered by the finest level. Second, at every certain fixed
number of time steps (e.g. at every 500 time steps) to “‘refresh” the composite grid. Without the latter, com-
posite grids generated with finest levels covering a large portion of the domain would tend to stay permanently
in use and the integration would become inefficient.

The presence of fourth order derivatives in the Cahn—Hilliard equation poses the question of whether or not
highly accurate interpolation schemes are required for the computation of ghost values at the borders of each
grid patch to achieve global second order accuracy. This question is well studied for second order problems.
However, for fourth-order equations, it has not been investigated much, neither analytically nor numerically.
It turns out, as our numerical experiments will demonstrate, that the very same interpolation schemes used for
computing ghost values in second order problems (e.g. [31]) work rather well with the linear, multilevel mul-
tigrid method proposed here for the Cahn-Hilliard equation. More specifically, second order polynomial
interpolations at grid interfaces with third order interpolations only near T-junctions of two grid patches
of the same level are sufficient to obtain global second order accuracy for the order parameter.

Next, we describe the discrete spatial operators and devote Section 4 to the discussion of the proposed lin-
ear multilevel multigrid solver.

3.2. Gradient, divergence and Laplacian difference operators

The phase field, and the auxiliary variables ¢, and ¢, are placed at cell centers. Second order approxima-
tions for their first order derivatives are given by the centered finite difference operators

Pu= Pt and Dg, =Pt 19

where for simplicity, it is assumed that the mesh size is equal to / in both directions. We observe that (19)
defines the derivatives at the cell edges. Fig. 1 shows the locations of the variables and their first-order deriv-
atives near an interface between two successive refinement levels.

At coarse cell edges, underneath fine grid patches belonging to the next finer level, the first derivative is
defined by the average of the corresponding finer ones. Referring to Fig. 1, the x derivative at the coarse cell
edge covered by the border of the fine grid patch displayed, is given by

D¢, /24 —

[ | 3 3
| T ]
wI12) (ij+372) (i+1j+3/2)
(i~112+1) (i+1/2j+1) (i+372j+1)
- ] - [ ] -—
(ij+1) (i+1j+1)
(1-1/2.])
- o 1 i
(1) (ij+172) (i+1j+1/2)
(i~1/2)) (i+12)) (i+3/2))
- o - [ ] -—
(i) (i+1)
[ | ' '
| T L]

(1J-172) (j=112) (i+1,j-112)

Fig. 1. Location of coarse and fine variables.
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(Dx@i_1)2j + Ditbi_1pj11)- (20)

N —

Dx¢1+1/2,J =
Based on (19) and (20), the gradient of a cell centered variable can be defined as

G¢i,j = (Dx¢[—l/24j7Dy¢i,j—l/2)' (21)

The divergence operator defined for a vector v, ; = (1,01’;1/7 xpziH/z), whose components are located at the
center of the cell edges, is given at the cell center by

Vi, ~ Ve, Yo, — Vo,
D- wi‘j _ i+1/2 ; i—1/2,j + ij+1/2 ; l.j*]/z.

By simply composing the divergence and the gradient operators (21) and (22), an approximation for the
Laplacian operator can be naturally obtained for cell-centered variables on the composite grid, such that
the result of

1 1
D- Gd)i‘j = Z (Dx¢i+l/2,j - qusi—l/Z‘j) + z (Dyd)i,jJrl/Z - Dy¢zﬂj—l/2)> (23)

is defined at cell centers (note that, since the first derivatives are computed by averages close to coarse-fine grid
interfaces, (23) is not the 5-point stencil there). This is the approximation of the Laplacian we employ, except
during the smoothing steps, in the linear multilevel multigrid method, to be detailed next, where the relaxations
are based only on the standard 5-point stencil (no averaging involved).

Introducing the discretization in space, (13) and (14) assume the form

oczgol“/At -D- G(p”“ =by,,,
(,L.gollz+1 2D GQD'HI) 4 ¢g+l _ bz

(22)

(24)
(25)

i)

where by, = —u @} /At — oyt /At+ Big}, + Pogl;!, and by, = 0.

Note that by worklng with the Canh-Hilliard equation as a system, we avoid the direct discretization of the
biharmonic differential operator. The linear system in the unknowns (p”“ and (p”“ (24) and (25), can be effi-
ciently solved by a linear multilevel multigrid method as we detail next.

4. Linear, multilevel multigrid method

We first describe the application of the linear multigrid method for a uniform grid and then we comment on
how to modify the procedure appropriately for the multilevel context of a composite grid (here, the term mul-
tilevel, refers to the actual refinement levels of the adaptive grid and not to the “virtual” levels needed in the
multigrid method).

We employ the V-cycle schedule within a coarse grid correction scheme [32]. Given an initial guess, for the
solution of (24) and (25) on each computational cell (i, /), (p,”j+1 0 (qo'l’+1 0 (pg+1 9), we define the correction e;

as the difference between exact and approximate solutions,
=o' — i, (26)
and, from (24) and (25), we define the residual, v;; = (ry,r5,,) by
—(o00} /At =D - Gy 1), (27)
_[ (,L.q)111+10 2D G(pn+l 0) 4 (pg+l 0]’ (28)

rlu = b1
I"z,] = bz

ij?
i

for each computational cell (i, /).

One of the most important elements in a multigrid method is the relaxation operation or smoothing step.
Relaxation methods should eliminate effectively the high-frequency components of the error, while leaving
the low-frequency components relatively untouched. We employ a red-black relaxation (smoothing) scheme
based on the linear system (24) and (25), which is given by
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o/ At 4/h21 [ei,] _ [Vhsli_1>‘| 29)
—(t+4e/?) 1 || rhsy, |’
with
rhsy, = ri,, + @, T e, ; 1ty , (30)
and
el +e +e +e

_ 2
rhsy,, =1y, —€,

i-1,j i1 ij-1

ij+1 . (3 1 )

hZ

In the linear system for the correction, (29), k is the relaxation index and, in (30) and (31), either / = &k — 1
or [ = k depending on whether (i, j) determines a red or a black cell. Note that a slightly different two-by-two
linear system must be solved during the smoothing step for the semi-implicit Euler method employed in the
first time step.

One complete smoothing step is given by solving (29)—(31) successively, in turns, once for the red cells and
once for the black cells. When going down in the V-cycle, smoothing is performed by relaxing the correction v;
times before restricting down the residual, and by relaxing it v, times when going up, after prolongating coar-
ser corrections up. As shown in Section 5, good rates of convergence can be obtained by simply taking
vi = v, = 1, and by performing restrictions down by simple average of fine residual values and prolongations
up by bilinear interpolation of coarse correction values.

Typically, each (1,1) V-cycle reduces the residual by a factor of approximately 10. For the cases run, only
from 6 to 11 of these cycles are needed to decrease the residual to O(h?) (regardless uniform or composite
grids, /1 being the mesh size of the finest level in the latter case). Periodic boundary conditions are employed
for each of the systems to be solved.

In the composite grid context, each level of refinement is also viewed as one of the virtual multigrid levels.
In this case, applying the method requires some additional steps since refinement levels do not completely
cover the computational domain. During the smoothing sweeps, ghost cells appended to grid borders are
updated immediately after each red or black relaxation sweep for all grids in the same level. Also, even though
the difference operator defined by (23) cease to be the usual 5-point discretization for the Laplacian at coarse-
fine level interfaces on composite grids, relaxations are still performed by employing (29)—(31) for the residual-
correction equation. Only when computing residuals at these locations, the first order derivatives appearing in
(23) are obtained as the simple average of the finer ones, before computing the Laplacian employing the dif-
ference operator D - G.

5. Numerical results
5.1. Numerical validation of the approach

We now validate the proposed approach by performing a convergence-under-refinement analysis for the
forced, Cahn—Hilliard equation

% (6,3) = V() + F(1%), (32)

/1((]3) :f,(d)) - szzd)(ta X)> (33)

where F(t,X) is a forcing term, and f'(¢) = ¢’ — ¢ is the first derivative of the double-well potential (3). To
setup a smooth model problem, we first choose the function

¢.(t,x) = =1+, [ —exp(—1),+,exp (cos(2mx + 2my + w, 1))], (34)

as the exact solution of (32) and (33), for 0 < 7 < 10, (x,y) = x € [0,1] x [0, 1], where k = 2/[exp(1) — exp(—1)],
and w = 20n. Thus, the forcing term is given by
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09,
ot (t7 X) - Vzu(d)(_'(t7 X))v (35)
and the initial condition by ¢(0,x) = ¢,(0,x). Note that —1 < ¢,(¢,x) < +1 for any point (¢,x). We take
¢ =5 x 1072 in the chemical potential (33).

For the results that follow, we adopt doubly periodic boundary conditions. The parameter t appearing in
(7) is chosen to be

t= max {/"(¢)} =2,

—1<g<+1

F(t,x) =

and the time step is selected as At = Ax, which is kept fixed throughout the integration of this test problem.
Note that this choice of At is for illustrating the rate of convergence of the method and not from a stability
requirement. The method behaved as unconditionally stable in all the numerical tests we conducted.

With the above choice of parameters we obtain the convergence results summarized in Table 1 for a
sequence of n x n uniform grids. These results show a clear second order convergence behavior of the method
on uniform grids.

Next, on the composite grid shown in Fig. 2, we perform a standard static-grid test. In this case, the grid
was selected arbitrarily and kept fixed at all times. The purpose of this test is to verify that the truncation
errors introduced by interpolation and the discretization schemes at coarse-fine level interfaces are correctly
controlled to prevent global accuracy degradation. Table 2 shows the results for this case.

In Table 2, the notation “n + 17 in the first line, for n = 128, 256, and 512, stands for “a two-level compos-
ite grid formed by a n x n uniform grid (level 1) plus one additional refinement level (level 2)”. The results
indicate again a clear second order convergence behavior for the numerical scheme in the presence of
coarse-fine grid interfaces (even in the maximum norm).

Table 1
L,- and L..-norms of the errors, and convergence ratios on uniform grids (z = 10)
n 128 Ratio 256 Ratio 512
b — el 241 x 107! 3.81 6.33 x 1072 3.98 1.59 x 1072
by — bello 528 x 107! 3.67 1.44 x 107! 3.91 3.68 x 1072
1
%
Fig. 2. Composite grid employed in the static-grid test.
Table 2
L,- and L..-norms of the errors, and convergence ratios on composite grids (z = 10)
n+1 128+1 Ratio 256+1 Ratio 512+1
by — bells 6.36 x 1072 3.98 1.60 x 1072 4.00 4.00 x 1073

b — el 1.45x 107! 3.91 3.71 x 1072 3.98 9.32 x 1073
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5.2. Capturing spinodal decomposition with the fully adaptive strategy
Next, we consider the process of spinodal decomposition to illustrate the performance of the fully adap-

tive method. We first describe our space and time adaptive strategy which is then followed by the numer-
ical results.

t=0.025 t=0.025

t=0.1078125 t=0.1078125

t=70 t=7.0

Fig. 3. Spinodal decomposition. The composite adaptive mesh (left column) and the phase field (right column). The refinement levels
appear as grid patches of different colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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5.2.1. The adaptive strategy

The time step size Az is carefully selected to accurately resolve both the initial fast dynamics and the
late slower, coarsening motion while retaining at all times a monotone decrease of the energy and
second order accuracy. Initially, we take At = 2.5¢> and integrate up to ¢ = 10e with this time step. Then,
we increase the time step to Af = /4 to speed up the computations while retaining second order accuracy.
This time step size selection is solely based on accuracy and on the need to capture the fast initial dynam-
ics and not imposed by a stability constraint. Indeed, we have tested the semi-implicit scheme with
At = O(1) on both uniform and composite grids with resolutions up to 1/512 and found it to be always
stable.

We cover initially the computational domain entirely with the finest level. Once the phase domains begin to
form, the adaptive composite mesh is automatically triggered, keeping the phase transition layers covered by
the finest level patches at all times, employing the flagging criterion explained in 3.1.

0.25F

0.2

ENERGY
o
&

0.1

0.05F

TIME

Fig. 4. Energy versus time for an initially random perturbation of a uniform equal mixture, ¢ = 0.01 and 7 = 2.

TIME PER TIME STEP
NUMBER OF CELLS

0 . . . 0.1 . .
0 1000 2000 3000 4000 0 1000 2000 3000 4000
TIME STEP TIME STEP

Fig. 5. Performance of the fully adaptive strategy: (a) relative CPU time per time step, and (b) relative number of computational cells per
time step (scaled by the total number of the initial uniform fine grid).
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Fig. 6. Different stationary states (¢ = 7) starting from a random perturbation of an equal composition mixture.
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5.2.2. Dynamics of a perturbed equal composition
We take the initial condition to be a random perturbation of a uniform equal mixture

¢(0,x) =er(x), x€][0,1] x[0,1], (36)

where the random function r(x) € [—1, 1], has zero mean. In (36), e = 0.01, and t = 2 in (7).

Fig. 3 presents a series of snapshots of both the composite adaptive mesh (left column) and the phase field ¢
(right column). The refinement levels are shown as grid patches of different colors. After a very fast initial
dynamics, the phase domains are already well defined at 1 = O(e) (second row) and a composite grid with
two levels suffices to efficiently cover the thin domains and their boundaries. As the phase domains coarsen,
around ¢ = 0.36 (third row), the adaptive mesh is composed of three levels of refinement but shortly after that
(around ¢ = 1.1) and up to until the final time # = 7 four levels are employed. Note that at all times the finest
level covers entirely the phase boundaries. As Fig. 4 demonstrates, with the adaptive time step selection
detailed in Section 5.2.1, we obtain a monotonic decrease of the free energy per time step. The stationary-state
value of free energy scaled by the interfacial width, H /¢, is 1.8811. The mean of the order parameter is also
preserved up to O(k?) at all times.

The performance of the fully adaptive strategy is documented in Fig. 5 in terms of (a) the relative CPU time
and (b) the relative number of computational cells as functions of the time step number. Because of the use of
the uniform fine mesh in the initial transient stage, most of the computational work is spent during that short
time interval; 100 time steps out of a total of 3393. As Fig. 5 shows, once the phase domains are formed and
begin to coarsen the CPU time and the total number of computational cells decrease an order of magnitude
with the adaptive method. The spikes in the plot shown in Fig. 5a correspond to the events when remeshing
was performed (short spikes), and when output data were written out for visualization purposes (long spikes).

5.2.3. Multiple doubly-periodic stationary states

While developing the adaptive strategy that captures accurately both the transient and the stationary states
of the solution, we found several stationary solutions. These solutions began with the same random perturba-
tion of the uniform state (36), but these initial data were distributed differently on the initial mesh. This ser-
endipitous finding lead us to consider a fixed set of randomly generated numbers {er_i}f:l, —1<r <+,
j=1,2,... k, with zero mean, and to explore different distributions of these points on the initial (fine) uni-
form mesh. For example, we distributed these numbers on the mesh column-wise or row-wise. In another case,
trying to favor different modes, we divided the computational domain into four equal sub-domains and visited
each of these in a particular order (e.g. diagonally, lower left, upper right lower right, and upper left). Fig. 6
displays the different stationary states and the corresponding adaptive meshes we obtained with this proce-
dure. Not surprisingly, the solution in the first row of Fig. 6 has the same relative stationary energy as that
given by two vertical strips, H/e = 1.8811 (Fig. 3), and half of the energy of the stationary solution given
by the four strips, H/e = 3.7623 (Fig. 6, last row). For the other stationary solutions on the second to the
fourth row of Fig. 6, H/e is equal to 2.3547, 2.6634, and 2.6634, respectively. In all the cases, both the final
patterns and the energy remain the same even for very long times (we continued the computations up ¢ = 50)
and thus these stationary states appear to be fairly stable. These stationary solutions are consistent with the
recent result [27] that, for small ¢, minimizers of H in the 2D torus exhibit a profile asymptotic to the solutions
of the corresponding isoperimetric problem which in 2D are circles and lines.

In the case when 7 = 0 in the splitting (7), only the biharmonic term is treated implicitly and thus the com-
putations require a somewhat restrictive time step. Interestingly, we have found that for the same random ini-
tial condition that lead to the circular stationary state for t = 2, the scheme with © = 0 (and At ~ Ch?) selects a
stationary state consisting of the two vertical strips. This is not entirely surprising as the schemes for 7 = 0 and
7 = 2 have different numerical dissipation and the initial condition is random.

6. Conclusions
We presented a robust and efficient numerical method for the Cahn—Hilliard equation which employs adap-

tion both in space and time. The numerical experiments suggest that the methodology is free of stability time
stepping constraints. Moreover, it can be orders of magnitude faster than on equivalent uniform grids once the
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phase layers are well formed. The time and space discretization on a composite adaptive grid produces a linear
system of equations that we solve at optimal cost with a linear multilevel multigrid method. The fully adaptive
strategy is capable of capturing accurately both the transient stage and the slow domain coarsening of spin-
odal decomposition. Using this methodology, we identified several stationary solutions on the 2D torus that,
to our knowledge, have not been reported in the literature.
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